Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.600
1.
Protein Sci ; 33(6): e5016, 2024 Jun.
Article En | MEDLINE | ID: mdl-38747381

RAF kinases are key components of the RAS-MAPK signaling pathway, which drives cell growth and is frequently overactivated in cancer. Upstream signaling activates the small GTPase RAS, which recruits RAF to the cell membrane, driving a transition of the latter from an auto-inhibited monomeric conformation to an active dimer. Despite recent progress, mechanistic details underlying RAF activation remain unclear, particularly the role of RAS and the membrane in mediating this conformational rearrangement of RAF together with 14-3-3 to permit RAF kinase domain dimerization. Here, we reconstituted an active complex of dimeric BRAF, a 14-3-3 dimer and two KRAS4B on a nanodisc bilayer and verified that its assembly is GTP-dependent. Biolayer interferometry (BLI) was used to compare the binding affinities of monomeric versus dimeric full-length BRAF:14-3-3 complexes for KRAS4B-conjugated nanodiscs (RAS-ND) and to investigate the effects of membrane lipid composition and spatial density of KRAS4B on binding. 1,2-Dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) and higher KRAS4B density enhanced the interaction of BRAF:14-3-3 with RAS-ND to different degrees depending on BRAF oligomeric state. We utilized our reconstituted system to dissect the effects of KRAS4B and the membrane on the kinase activity of monomeric and dimeric BRAF:14-3-3 complexes, finding that KRAS4B or nanodiscs alone were insufficient to stimulate activity, whereas RAS-ND increased activity of both states of BRAF. The reconstituted assembly of full-length BRAF with 14-3-3 and KRAS on a cell-free, defined lipid bilayer offers a more holistic biophysical perspective to probe regulation of this multimeric signaling complex at the membrane surface.


14-3-3 Proteins , Nanostructures , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins p21(ras) , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/chemistry , 14-3-3 Proteins/genetics , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Humans , Nanostructures/chemistry , Protein Multimerization , Protein Binding , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism
2.
Proc Natl Acad Sci U S A ; 121(20): e2316266121, 2024 May 14.
Article En | MEDLINE | ID: mdl-38709923

Neurons regulate the microtubule-based transport of certain vesicles selectively into axons or dendrites to ensure proper polarization of function. The mechanism of this polarized vesicle transport is still not fully elucidated, though it is known to involve kinesins, which drive anterograde transport on microtubules. Here, we explore how the kinesin-3 family member KIF13A is regulated such that vesicles containing transferrin receptor (TfR) travel only to dendrites. In experiments involving live-cell imaging, knockout of KIF13A, BioID assay, we found that the kinase MARK2 phosphorylates KIF13A at a 14-3-3 binding motif, strengthening interaction of KIF13A with 14-3-3 such that it dissociates from TfR-containing vesicles, which therefore cannot enter axons. Overexpression of KIF13A or knockout of MARK2 leads to axonal transport of TfR-containing vesicles. These results suggest a unique kinesin-based mechanism for polarized transport of vesicles to dendrites.


14-3-3 Proteins , Dendrites , Kinesins , Protein Serine-Threonine Kinases , Receptors, Transferrin , Kinesins/metabolism , Kinesins/genetics , 14-3-3 Proteins/metabolism , Dendrites/metabolism , Phosphorylation , Receptors, Transferrin/metabolism , Animals , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Humans , Binding Sites , Microtubules/metabolism , Rats , Mice , Protein Binding
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732131

Overexpression of the 14-3-3ε protein is associated with suppression of apoptosis in cutaneous squamous cell carcinoma (cSCC). This antiapoptotic activity of 14-3-3ε is dependent on its binding to CDC25A; thus, inhibiting 14-3-3ε - CDC25A interaction is an attractive therapeutic approach to promote apoptosis in cSCC. In this regard, designing peptide inhibitors of 14-3-3ε - CDC25A interactions is of great interest. This work reports the rational design of peptide analogs of pS, a CDC25A-derived peptide that has been shown to inhibit 14-3-3ε-CDC25A interaction and promote apoptosis in cSCC with micromolar IC50. We designed new peptide analogs in silico by shortening the parent pS peptide from 14 to 9 amino acid residues; then, based on binding motifs of 14-3-3 proteins, we introduced modifications in the pS(174-182) peptide. We studied the binding of the peptides using conventional molecular dynamics (MD) and steered MD simulations, as well as biophysical methods. Our results showed that shortening the pS peptide from 14 to 9 amino acids reduced the affinity of the peptide. However, substituting Gln176 with either Phe or Tyr amino acids rescued the binding of the peptide. The optimized peptides obtained in this work can be candidates for inhibition of 14-3-3ε - CDC25A interactions in cSCC.


14-3-3 Proteins , Molecular Dynamics Simulation , Protein Binding , cdc25 Phosphatases , cdc25 Phosphatases/metabolism , cdc25 Phosphatases/chemistry , cdc25 Phosphatases/antagonists & inhibitors , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/chemistry , Humans , Peptides/chemistry , Peptides/metabolism , Amino Acid Sequence
4.
J Parkinsons Dis ; 14(3): 495-506, 2024.
Article En | MEDLINE | ID: mdl-38640169

Background: Parkinson's disease is a progressive neurodegenerative disorder mainly distinguished by sporadic etiology, although a genetic component is also well established. Variants in the LRRK2 gene are associated with both familiar and sporadic disease. We have previously shown that PAK6 and 14-3-3γ protein interact with and regulate the activity of LRRK2. Objective: The aim of this study is to quantify PAK6 and 14-3-3γ in plasma as reliable biomarkers for the diagnosis of both sporadic and LRRK2-linked Parkinson's disease. Methods: After an initial quantification of PAK6 and 14-3-3γ expression by means of Western blot in post-mortem human brains, we verified the presence of the two proteins in plasma by using quantitative ELISA tests. We analyzed samples obtained from 39 healthy subjects, 40 patients with sporadic Parkinson's disease, 50 LRRK2-G2019S non-manifesting carriers and 31 patients with LRRK2-G2019S Parkinson's disease. Results: The amount of PAK6 and 14-3-3γ is significantly different in patients with Parkinson's disease compared to healthy subjects. Moreover, the amount of PAK6 also varies with the presence of the G2019S mutation in the LRRK2 gene. Although the generalized linear models show a low association between the presence of Parkinson's disease and PAK6, the kinase could be added in a broader panel of biomarkers for the diagnosis of Parkinson's disease. Conclusions: Changes of PAK6 and 14-3-3γ amount in plasma represent a shared readout for patients affected by sporadic and LRRK2-linked Parkinson's disease. Overall, they can contribute to the establishment of an extended panel of biomarkers for the diagnosis of Parkinson's disease.


14-3-3 Proteins , Biomarkers , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , p21-Activated Kinases , Humans , Parkinson Disease/blood , Parkinson Disease/diagnosis , Parkinson Disease/genetics , 14-3-3 Proteins/blood , Male , p21-Activated Kinases/blood , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Female , Aged , Biomarkers/blood , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Middle Aged , Aged, 80 and over , Prospective Studies , Adult , Mutation
6.
Genes (Basel) ; 15(4)2024 Mar 24.
Article En | MEDLINE | ID: mdl-38674334

There are about 14,000 pseudogenes that are mutated or truncated sequences resembling functional parent genes. About two-thirds of pseudogenes are processed, while others are duplicated. Although initially thought dead, emerging studies indicate they have functional and regulatory roles. We study 14-3-3ζ, an adaptor protein that regulates cytokine signaling and inflammatory diseases, including rheumatoid arthritis, cancer, and neurological disorders. To understand how 14-3-3ζ (gene symbol YWHAZ) performs diverse functions, we examined the human genome and identified nine YWHAZ pseudogenes spread across many chromosomes. Unlike the 32 kb exon-to-exon sequence in YWHAZ, all pseudogenes are much shorter and lack introns. Out of six, four YWHAZ exons are highly conserved, but the untranslated region (UTR) shows significant diversity. The putative amino acid sequence of pseudogenes is 78-97% homologous, resulting in striking structural similarities with the parent protein. The OMIM and Decipher database searches revealed chromosomal loci containing pseudogenes are associated with human diseases that overlap with the parent gene. To the best of our knowledge, this is the first report on pseudogenes of the 14-3-3 family protein and their implications for human health. This bioinformatics-based study introduces a new insight into the complexity of 14-3-3ζ's functions in biology.


14-3-3 Proteins , Genome, Human , Pseudogenes , Humans , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Pseudogenes/genetics , Exons/genetics
7.
Molecules ; 29(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38675584

To understand the biological relevance and mode of action of artificial protein ligands, crystal structures with their protein targets are essential. Here, we describe and investigate all known crystal structures that contain a so-called "molecular tweezer" or one of its derivatives with an attached natural ligand on the respective target protein. The aromatic ring system of these compounds is able to include lysine and arginine side chains, supported by one or two phosphate groups that are attached to the half-moon-shaped molecule. Due to their marked preference for basic amino acids and the fully reversible binding mode, molecular tweezers are able to counteract pathologic protein aggregation and are currently being developed as disease-modifying therapies against neurodegenerative diseases such as Alzheimer's and Parkinson's disease. We analyzed the corresponding crystal structures with 14-3-3 proteins in complex with mono- and diphosphate tweezers. Furthermore, we solved crystal structures of two different tweezer variants in complex with the enzyme Δ1-Pyrroline-5-carboxyl-dehydrogenase (P5CDH) and found that the tweezers are bound to a lysine and methionine side chain, respectively. The different binding modes and their implications for affinity and specificity are discussed, as well as the general problems in crystallizing protein complexes with artificial ligands.


Protein Binding , Crystallography, X-Ray , Ligands , Humans , Models, Molecular , 14-3-3 Proteins/chemistry , 14-3-3 Proteins/metabolism , Binding Sites , Proteins/chemistry , Protein Conformation
8.
Cell Rep ; 43(4): 114054, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38578832

Cell fate conversion is associated with extensive post-translational modifications (PTMs) and architectural changes of sub-organelles, yet how these events are interconnected remains unknown. We report here the identification of a phosphorylation code in 14-3-3 binding motifs (PC14-3-3) that greatly stimulates induced cardiomyocyte (iCM) formation from fibroblasts. PC14-3-3 is identified in pivotal functional proteins for iCM reprogramming, including transcription factors and chromatin modifiers. Akt1 kinase and protein phosphatase 2A are the key writer and key eraser of the PC14-3-3 code, respectively. PC14-3-3 activation induces iCM formation with the presence of only Tbx5. In contrast, PC14-3-3 inhibition by mutagenesis or inhibitor-mediated code removal abolishes reprogramming. We discover that key PC14-3-3-embedded factors, such as histone deacetylase 4 (Hdac4), Mef2c, and Foxo1, form Hdac4-organized inhibitory nuclear condensates. PC14-3-3 activation disrupts Hdac4 condensates to promote cardiac gene expression. Our study suggests that sub-organelle dynamics regulated by a PTM code could be a general mechanism for stimulating cell reprogramming.


14-3-3 Proteins , Cellular Reprogramming , Histone Deacetylases , Myocytes, Cardiac , 14-3-3 Proteins/metabolism , Histone Deacetylases/metabolism , Phosphorylation , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Cellular Reprogramming/drug effects , Mice , Humans , Fibroblasts/metabolism , MEF2 Transcription Factors/metabolism , Amino Acid Motifs , Protein Binding
9.
ACS Chem Neurosci ; 15(9): 1926-1936, 2024 May 01.
Article En | MEDLINE | ID: mdl-38635928

The aggregation of α-synuclein (αS) plays a key role in Parkinson's disease (PD) etiology. While the onset of PD is age-related, the cellular quality control system appears to regulate αS aggregation throughout most human life. Intriguingly, the protein 14-3-3τ has been demonstrated to delay αS aggregation and the onset of PD in various models. However, the molecular mechanisms behind this delay remain elusive. Our study confirms the delay in αS aggregation by 14-3-3τ, unveiling a concentration-dependent relation. Utilizing microscale thermophoresis (MST) and single-molecule burst analysis, we quantified the early αS multimers and concluded that these multimers exhibit properties that classify them as nanoscale condensates that form in a cooperative process, preceding the critical nucleus for fibril formation. Significantly, the αS multimer formation mechanism changes dramatically in the presence of scaffold protein 14-3-3τ. Our data modeling suggests that 14-3-3τ modulates the multimerization process, leading to the creation of mixed multimers or co-condensates, comprising both αS and 14-3-3τ. These mixed multimers form in a noncooperative process. They are smaller, more numerous, and distinctively not on the pathway to amyloid formation. Importantly, 14-3-3τ thus acts in the very early stage of αS multimerization, ensuring that αS does not aggregate but remains soluble and functional. This offers long-sought novel entries for the pharmacological modulation of PD.


14-3-3 Proteins , Amyloid , Protein Multimerization , alpha-Synuclein , alpha-Synuclein/metabolism , 14-3-3 Proteins/metabolism , Humans , Amyloid/metabolism , Parkinson Disease/metabolism , Protein Aggregation, Pathological/metabolism
10.
Biomed Pharmacother ; 174: 116542, 2024 May.
Article En | MEDLINE | ID: mdl-38574620

Previous studies have demonstrated that the underlying mechanisms of myocardial ischemia/reperfusion injury (MIRI) are complex and involve multiple types of regulatory cell death, including ferroptosis, apoptosis, and autophagy. Thus, we aimed to identify the mechanisms underlying MIRI and validate the protective role of epigallocatechin-3-gallate (EGCG) and its related mechanisms in MIRI. An in vivo and in vitro models of MIRI were constructed. The results showed that pretreatment with EGCG could attenuate MIRI, as indicated by increased cell viability, reduced lactate dehydrogenase (LDH) activity and apoptosis, inhibited iron overload, abnormal lipid metabolism, preserved mitochondrial function, decreased infarct size, maintained cardiac function, decreased reactive oxygen species (ROS) level, and reduced TUNEL-positive cells. Additionally, EGCG pretreatment could attenuate ferroptosis, apoptosis, and autophagy induced by MIRI via upregulating 14-3-3η protein levels. Furthermore, the protective effects of EGCG could be abolished with pAd/14-3-3η-shRNA or Compound C11 (a 14-3-3η inhibitor) but not pAd/NC-shRNA. In conclusion, EGCG pretreatment attenuated ferroptosis, apoptosis, and autophagy by mediating 14-3-3η and protected cardiomyocytes against MIRI.


14-3-3 Proteins , Apoptosis , Autophagy , Catechin , Catechin/analogs & derivatives , Ferroptosis , Myocardial Reperfusion Injury , Catechin/pharmacology , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/drug therapy , Animals , Autophagy/drug effects , Apoptosis/drug effects , Ferroptosis/drug effects , 14-3-3 Proteins/metabolism , Male , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Reactive Oxygen Species/metabolism , Mice , Cardiotonic Agents/pharmacology , Cell Survival/drug effects , Rats, Sprague-Dawley
11.
Sci Rep ; 14(1): 8852, 2024 04 17.
Article En | MEDLINE | ID: mdl-38632288

Ischemic stroke (IS) is a common cerebrovascular disease whose pathogenesis involves a variety of immune molecules, immune channels and immune processes. 6-methyladenosine (m6A) modification regulates a variety of immune metabolic and immunopathological processes, but the role of m6A in IS is not yet understood. We downloaded the data set GSE58294 from the GEO database and screened for m6A-regulated differential expression genes. The RF algorithm was selected to screen the m6A key regulatory genes. Clinical prediction models were constructed and validated based on m6A key regulatory genes. IS patients were grouped according to the expression of m6A key regulatory genes, and immune markers of IS were identified based on immune infiltration characteristics and correlation. Finally, we performed functional enrichment, protein interaction network analysis and molecular prediction of the immune biomarkers. We identified a total of 7 differentially expressed genes in the dataset, namely METTL3, WTAP, YWHAG, TRA2A, YTHDF3, LRPPRC and HNRNPA2B1. The random forest algorithm indicated that all 7 genes were m6A key regulatory genes of IS, and the credibility of the above key regulatory genes was verified by constructing a clinical prediction model. Based on the expression of key regulatory genes, we divided IS patients into 2 groups. Based on the expression of the gene LRPPRC and the correlation of immune infiltration under different subgroups, LRPPRC was identified as an immune biomarker for IS. GO enrichment analyses indicate that LRPPRC is associated with a variety of cellular functions. Protein interaction network analysis and molecular prediction indicated that LRPPRC correlates with a variety of immune proteins, and LRPPRC may serve as a target for IS drug therapy. Our findings suggest that LRPPRC is an immune marker for IS. Further analysis based on LRPPRC could elucidate its role in the immune microenvironment of IS.


Ischemic Stroke , Humans , 14-3-3 Proteins , Biomarkers , Computational Biology , Ischemic Stroke/genetics , Ischemic Stroke/immunology , Ischemic Stroke/metabolism , Methyltransferases , Models, Statistical , Neoplasm Proteins , Prognosis , Adenosine/analogs & derivatives , Adenosine/metabolism
12.
Mol Biol Cell ; 35(6): ar81, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38598291

Neurons are polarized and typically extend multiple dendrites and one axon. To maintain polarity, vesicles carrying dendritic proteins are arrested upon entering the axon. To determine whether kinesin regulation is required for terminating anterograde axonal transport, we overexpressed the dendrite-selective kinesin KIF13A. This caused mistargeting of dendrite-selective vesicles to the axon and a loss of dendritic polarity. Polarity was not disrupted if the kinase MARK2/Par1b was coexpressed. MARK2/Par1b is concentrated in the proximal axon, where it maintains dendritic polarity-likely by phosphorylating S1371 of KIF13A, which lies in a canonical 14-3-3 binding motif. We probed for interactions of KIF13A with 14-3-3 isoforms and found that 14-3-3ß and 14-3-3ζ bound KIF13A. Disruption of MARK2 or 14-3-3 activity by small molecule inhibitors caused a loss of dendritic polarity. These data show that kinesin regulation is integral for dendrite-selective transport. We propose a new model in which KIF13A that moves dendrite-selective vesicles in the proximal axon is phosphorylated by MARK2. Phosphorylated KIF13A is then recognized by 14-3-3, which causes dissociation of KIF13A from the vesicle and termination of transport. These findings define a new paradigm for the regulation of vesicle transport by localized kinesin tail phosphorylation, to restrict dendrite-selective vesicles from entering the axon.


14-3-3 Proteins , Axons , Dendrites , Kinesins , Kinesins/metabolism , Dendrites/metabolism , 14-3-3 Proteins/metabolism , Animals , Axons/metabolism , Phosphorylation , Humans , Protein Serine-Threonine Kinases/metabolism , Cell Polarity/physiology , Axonal Transport/physiology , Rats , Neurons/metabolism
13.
Med Oncol ; 41(5): 100, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38538804

Colorectal cancer (CRC) ranks as the third most prevalent cancer type globally. Nevertheless, the fundamental mechanisms driving CRC progression remain ambiguous, and the prognosis for the majority of patients diagnosed at an advanced stage is dismal. YWHA/14-3-3 proteins serve as central nodes in several signaling pathways and are closely related to tumorigenesis and progression. However, their exact roles in CRC are still poorly elucidated. In this study, we revealed that YWHAG was the most significantly upregulated member of the YWHA/14-3-3 family in CRC tissues and was associated with a poor prognosis. Subsequent phenotypic experiments showed that YWHAG promoted the proliferation, migration, and invasion of CRC cells. Mechanistically, RNA-seq data showed that multiple signaling pathways, including Wnt and epithelial-mesenchymal transition, were potentially regulated by YWHAG. CTTN was identified as a YWHAG-associated protein, and mediated its tumor-promoting functions by activating the Wnt/ß-catenin signaling in CRC cells. In summary, our data indicate that YWHAG facilitates the proliferation, migration, and invasion of CRC cells by modulating the CTTN-Wnt/ß-catenin signaling pathway, which offers a novel perspective for the treatment of CRC.


Colorectal Neoplasms , beta Catenin , Humans , beta Catenin/metabolism , Wnt Signaling Pathway , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Prognosis , Carcinogenesis , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Cell Movement , Epithelial-Mesenchymal Transition , Cortactin/metabolism , 14-3-3 Proteins/metabolism
14.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article En | MEDLINE | ID: mdl-38542405

14-3-3 proteins are widely distributed in eukaryotic cells and play an important role in plant growth, development, and stress tolerance. This study revealed nine 14-3-3 genes from the genome of Nitraria sibirica Pall., a halophyte with strong salt tolerance. The physicochemical properties, multiple sequence alignment, gene structure and motif analysis, and chromosomal distributions were analyzed, and phylogenetic analysis, cis-regulatory elements analysis, and gene transcription and expression analysis of Ns14-3-3s were conducted. The results revealed that the Ns14-3-3 gene family consists of nine members, which are divided into two groups: ε (four members) and non-ε (five members). These members are acidic hydrophilic proteins. The genes are distributed randomly on chromosomes, and the number of introns varies widely among the two groups. However, all genes have similar conserved domains and three-dimensional protein structures. The main differences are found at the N-terminus and C-terminus. The promoter region of Ns14-3-3s contains multiple cis-acting elements related to light, plant hormones, and abiotic stress responses. Transcriptional profiling and gene expression pattern analysis revealed that Ns14-3-3s were expressed in all tissues, although with varying patterns. Under salt stress conditions, Ns14-3-3 1a, Ns14-3-3 1b, Ns14-3-3 5a, and Ns14-3-3 7a showed significant changes in gene expression. Ns14-3-3 1a expression decreased in all tissues, Ns14-3-3 7a expression decreased by 60% to 71% in roots, and Ns14-3-3 1b expression increased by 209% to 251% in stems. The most significant change was observed in Ns14-3-3 5a, with its expression in stems increasing by 213% to 681%. The yeast two-hybrid experiments demonstrated that Ns14-3-3 5a interacts with NsVP1 (vacuolar H+-pyrophosphatase). This result indicates that Ns14-3-3 5a may respond to salt stress by promoting ionic vacuole compartmentalization in stems and leaves through interactions with NsVP1. In addition, N. sibirica has a high number of stems, allowing it to compartmentalize more ions through its stem and leaf. This may be a contributing factor to its superior salt tolerance compared to other plants.


Magnoliopsida , Salt Stress , Phylogeny , Salt Stress/genetics , Salt Tolerance/genetics , Introns/genetics , 14-3-3 Proteins/genetics , Inorganic Pyrophosphatase , Plant Proteins/genetics , Gene Expression Regulation, Plant , Stress, Physiological/genetics
15.
J Vis Exp ; (205)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38497636

CRAF is a primary effector of RAS GTPases and plays a critical role in the tumorigenesis of several KRAS-driven cancers. In addition, CRAF is a hotspot for germline mutations, which are shown to cause the developmental RASopathy, Noonan syndrome. All RAF kinases contain multiple phosphorylation-dependent binding sites for 14-3-3 regulatory proteins. The differential binding of 14-3-3 to these sites plays essential roles in the formation of active RAF dimers at the plasma membrane under signaling conditions and in maintaining RAF autoinhibition under quiescent conditions. Understanding how these interactions are regulated and how they can be modulated is critical for identifying new therapeutic approaches that target RAF function. Here, I describe a bioluminescence resonance energy transfer (BRET)-based assay for measuring the interactions of CRAF with 14-3-3 proteins in live cells. Specifically, this assay measures the interactions of CRAF fused to a Nano luciferase donor and 14-3-3 fused to a Halo tag acceptor, where the interaction of RAF and 14-3-3 results in donor-to-acceptor energy transfer and the generation of the BRET signal. The protocol further shows that this signal can be disrupted by mutations shown to prevent 14-3-3 binding to each of its high-affinity RAF docking sites. This protocol describes the procedures for seeding, transfecting, and replating the cells, along with detailed instructions for reading BRET emissions, performing data analysis, and confirming protein expression levels. In addition, example assay results, along with optimization and troubleshooting steps, are provided.


14-3-3 Proteins , Signal Transduction , 14-3-3 Proteins/genetics , Energy Transfer , Cell Membrane , Cell Division
16.
J Agric Food Chem ; 72(13): 7043-7054, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38509000

14-3-3ζ protein, the key target in the regulation and control of integrin ß3 outside-in signaling, is an attractive new strategy to inhibit thrombosis without affecting hemostasis. In this study, 4'-O-methylbavachalconeB (4-O-MB) in Psoraleae Fructus was identified as a 14-3-3ζ ligand with antithrombosis activity by target fishing combined with ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) analysis. The competitive inhibition analysis showed that 4-O-MB targeted 14-3-3ζ and blocked the 14-3-3ζ/integrin ß3 interaction with inhibition constant (Ki) values of 9.98 ± 0.22 µM. Molecular docking and amino acid mutation experiments confirmed that 4-O-MB specifically bound to 14-3-3ζ through LSY9 and SER28 to regulate the 14-3-3ζ/integrin ß3 interaction. Besides, 4-O-MB affected the integrin ß3 early outside-in signal by inhibiting AKT and c-Src phosphorylation. Meanwhile, 4-O-MB could inhibit ADP-, collagen-, or thrombin-induced platelet aggregation function but had no effect on platelet adhesion to collagen-coated surfaces in vivo. Administration of 4-O-MB could significantly inhibit thrombosis formation without disturbing hemostasis in mice. These findings provide new prospects for the antithrombotic effects of Psoraleae Fructus and the potential application of 4-O-MB as lead compounds in the therapy of thrombosis by targeting 14-3-3ζ.


Platelet Aggregation , Thrombosis , Mice , Animals , Integrin beta3/genetics , Integrin beta3/chemistry , Integrin beta3/metabolism , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/pharmacology , Molecular Docking Simulation , Thrombosis/drug therapy , Thrombosis/genetics , Thrombosis/metabolism , Collagen/metabolism , Blood Platelets/metabolism
17.
Pediatr Surg Int ; 40(1): 63, 2024 Mar 03.
Article En | MEDLINE | ID: mdl-38431920

PURPOSE: Necrotizing enterocolitis (NEC) is a significant contributor to neonatal mortality. This study aimed to investigate the role of high levels of miR-375-3p in breast milk in the development of NEC and elucidate its mechanism. METHODS: Differential expression of miR-375-3p in the intestines of breast-fed and formula-fed mice was confirmed using real-time polymerase chain reaction (RT-PCR). NEC mice models were established, and intestinal injury was assessed using HE staining. RT-PCR and Western blot were conducted to examine the expression of miR-375-3p, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein ß (YWHAB), as well as the inflammatory in IEC-6 cells, and intestinal tissues obtained from NEC mice and patients. Flow cytometry and cell counting kit-8 (CCK-8) were employed to elucidate the impact of miR-375-3p and YWHAB on cell apoptosis and proliferation. RESULTS: Breastfeeding increases miR-375-3p expression in the intestines. The expression of miR-375-3p in NEC intestinal tissues exhibited a significant decrease compared to the healthy group. Additionally, the expression of interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) was higher in the NEC group compared to the control group. Down-regulation of miR-375-3p inhibited IEC-6 cell proliferation, increased apoptosis, and elevated secretion of inflammatory factors. Bioinformatics revealed that YWHAB may be a target of miR-375-3p. RT-PCR and Western blot indicated a down-regulation of YWHAB expression in intestines of NEC patients and mice. Furthermore, YWHAB was found to be positively connected with miR-375-3p. Knockdown miR-375-3p down-regulated YWHAB expression in cells. Inhibition of YWHAB exhibited similar effects to miR-375-3p in IEC-6 cells. YWHAB plasmid partially reverse cellular functional impairment induced by miR-375-3p knockdown. CONCLUSIONS: Breastfeeding elevated miR-375-3p expression in intestines in neonatal mice. MiR-375-3p leads to a decrease in apoptosis of intestinal epithelial cells, an increase in cell proliferation, and a concomitant reduction in the expression of inflammatory factors partly through targeting YWHAB.


14-3-3 Proteins , Enterocolitis, Necrotizing , Infant, Newborn, Diseases , MicroRNAs , Animals , Female , Humans , Infant, Newborn , Mice , 14-3-3 Proteins/metabolism , Abdominal Injuries , Enterocolitis, Necrotizing/metabolism , Fetal Diseases , MicroRNAs/genetics
18.
PLoS One ; 19(3): e0298820, 2024.
Article En | MEDLINE | ID: mdl-38452156

BACKGROUND: 14-3-3 proteins are ubiquitous proteins that play a role in cardiac physiology (e.g., metabolism, development, and cell cycle). Furthermore, 14-3-3 proteins were proposed to regulate the electrical function of the heart by interacting with several cardiac ion channels, including the voltage-gated sodium channel Nav1.5. Given the many cardiac arrhythmias associated with Nav1.5 dysfunction, understanding its regulation by the protein partners is crucial. AIMS: In this study, we aimed to investigate the role of 14-3-3 proteins in the regulation of the human cardiac sodium channel Nav1.5. METHODS AND RESULTS: Amongst the seven 14-3-3 isoforms, only 14-3-3η (encoded by YWHAH gene) weakly co-immunoprecipitated with Nav1.5 when heterologously co-expressed in tsA201 cells. Total and cell surface expression of Nav1.5 was however not modified by 14-3-3η overexpression or inhibition with difopein, and 14-3-3η did not affect physical interaction between Nav1.5 α-α subunits. The current-voltage relationship and the amplitude of Nav1.5-mediated sodium peak current density were also not changed. CONCLUSIONS: Our findings illustrate that the direct implication of 14-3-3 proteins in regulating Nav1.5 is not evident in a transformed human kidney cell line tsA201.


14-3-3 Proteins , Voltage-Gated Sodium Channels , Humans , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Voltage-Gated Sodium Channels/metabolism , Myocytes, Cardiac/metabolism , Cell Line , Arrhythmias, Cardiac , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism
19.
Int J Biol Macromol ; 266(Pt 2): 130802, 2024 May.
Article En | MEDLINE | ID: mdl-38492709

Tau protein is an intrinsically disordered protein that plays a key role in Alzheimer's disease (AD). In brains of AD patients, Tau occurs abnormally phosphorylated and aggregated in neurofibrillary tangles (NFTs). Together with Tau, 14-3-3 proteins - abundant cytosolic dimeric proteins - were found colocalized in the NFTs. However, so far, the molecular mechanism of the process leading to pathological changes in Tau structure as well as the direct involvement of 14-3-3 proteins are not well understood. Here, we aimed to reveal the effects of phosphorylation by protein kinase A (PKA) on Tau structural preferences and provide better insight into the interaction between Tau and 14-3-3 proteins. We also addressed the impact of monomerization-inducing phosphorylation of 14-3-3 at S58 on the binding to Tau protein. Using multidimensional nuclear magnetic resonance spectroscopy (NMR), chemical cross-linking analyzed by mass spectrometry (MS) and PAGE, we unveiled differences in their binding affinity, stoichiometry, and interfaces with single-residue resolution. We revealed that the interaction between 14-3-3 and Tau proteins is mediated not only via the 14-3-3 amphipathic binding grooves, but also via less specific interactions with 14-3-3 protein surface and, in the case of monomeric 14-3-3, also partially via the exposed dimeric interface. In addition, the hyperphosphorylation of Tau changes its affinity to 14-3-3 proteins. In conclusion, we propose quite complex interaction mode between the Tau and 14-3-3 proteins.


14-3-3 Proteins , Protein Binding , tau Proteins , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/chemistry , tau Proteins/metabolism , tau Proteins/chemistry , Humans , Phosphorylation , Protein Multimerization , Alzheimer Disease/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Models, Molecular
20.
Dig Dis Sci ; 69(4): 1253-1262, 2024 Apr.
Article En | MEDLINE | ID: mdl-38361148

BACKGROUND: Intrahepatic cholestasis of pregnancy (ICP) is associated with adverse pregnancy outcomes; however, the underlying mechanisms are not fully understood. AIMS: This study aimed to determine the role of exosomal miR-6891-5p in placental trophoblast dysfunction in ICP and identify new biomarkers for ICP diagnosis. METHODS: Serum samples were collected from ICP patients and healthy pregnant women, and serum exosomes were extracted and identified. Fluorescent dye labeling of exosomes and cell-verified cell phagocytosis were performed. In vitro experiments were conducted by adding taurocholic acid to simulate the ICP environment. Cell proliferation and apoptosis levels were detected using flow cytometry and the cell counting kit-8 assay. Mimics were constructed to overexpress miR-6891-5p in cells, and the binding site between miR-6891-5p and YWHAE was verified using luciferase reporter genes. RESULTS: miR-6891-5p expression was significantly decreased in serum exosomes of ICP patients. Co-culturing with exosomes derived from ICP patients' serum (ICP-Exos) decreased HTR-8/SVeno cell proliferation and increased apoptosis levels. miR-6891-5p upregulation in HTR-8/SVeno cells significantly increased cell viability and reduced cell apoptosis levels, as determined by the cell counting kit-8 assay and flow cytometry. A double luciferase assay confirmed that miR-6891-5p affected the expression of the downstream YWHAE protein. CONCLUSIONS: This study indicates that serum exosomes from ICP patients can impact the apoptosis of placental trophoblast HTR-8/SVeno cells through the miR-6891-5P/YWHAE pathway and can serve as specific molecular markers for ICP diagnosis.


Cholestasis, Intrahepatic , Exosomes , MicroRNAs , Pregnancy Complications , Female , Humans , Pregnancy , 14-3-3 Proteins/metabolism , Apoptosis , Cell Proliferation , Cholestasis, Intrahepatic/genetics , Cholestasis, Intrahepatic/metabolism , Exosomes/genetics , Luciferases/metabolism , MicroRNAs/blood , MicroRNAs/genetics , MicroRNAs/metabolism , Placenta/metabolism , Pregnancy Complications/genetics , Pregnancy Complications/metabolism
...